计算当前每期还款额,如果小 W 选择提前偿还银行借款,计算提前还款后的每期还 款额。
设投资乙国债的到期收益率为 rd,则:
1020 = 1 000×(1 + 4%×5)×(P/F,rd,3)
(P/F,rd,3)= 0.85
当 rd = 5% 时,(P/F,5%,3)= 0.8638
当 rd = 6% 时,(P/F,6%,3)= 0.8396
用插值法解得:
rd = 5% +(0.85 - 0.8638)÷(0.8396 - 0.8638)×(6% - 5%)= 5.57%
银行借款的有效年利率=(1 + 6%÷2)2- 1 = 6.09%
乙国债的到期收益率 5.57% 小于借款的有效年利率 6.09%,小 W 应选择提前偿还银行借款。
针对问题(2):在已知利率和还款期限的情况下,如果能够计算出提前还款 后剩余期限的还款现值,就能根据年金现值方程式解出剩余期限的每期还款金额。
当前每期还款额= 300 000÷(P/A,3%,10)= 35 169.16(元)
解法一:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,4)+ 60 000×(P/F,3%,4)+ X×(P/A,3%,6)×(P/F, 3%,4)= 300 000(元)
解得:X = 24 092.73(元)
解法二:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,6)- 60 000 = X×(P/A,3%,6)
解得:X = 24 093.33(元)


报价利率是指银行等金融机构提供的利率,该利率是包含了通货膨胀的利率,选项 A 不当选;有效年利率=(1 +计息期利率)复利次数- 1,计息期利率=报价利率 ÷ 年复利次数,报价利率不变时,有效年利率随着计息期利率的递减而增加(非线性关系),随着每年复利次数的增加而增加(非线性关系),选项 C、D 不当选。

根据固定增长股利模型:股票期望报酬率=股利收益率+资本利得收益
率,股票价格上升会导致股票期望报酬率下降,选项 A 不当选;资本利得收益率(g)上升会导致股票期望报酬率上升,选项 B 当选;预期现金股利下降会导致股票期望报酬率下降,选项 C 不当选;预期持有该股票的时间对股票期望报酬率没有影响,选项 D 不当选。

绝大多数资产的 β 系数是大于零的,它们收益率的变化方向与市场平均收益率的变化方向是一致的;极个别资产的 β 系数是负数,表明这类资产与市场平均收益的变化方向相反,当市场平均收益增加时,这类资产的收益却在减少。选项 A 当选。根据资本资产定价模型,必要收益率=Rf+β×(Rm-Rf),证券收益受到无风险报酬率Rf、风险价格(Rm- Rf)以及 β 系数的影响,选项 B 不当选。投资组合的 β 系数等于组合中各证券 β 值的加权平均数,一定会比组合某些证券的 β 系数低,比组合某些证券的 β 系数高,选项 C 不当选。 β 系数反映的是证券受系统风险影响的程度,选项 D 当选。

表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790

(2022)甲基金主要投资政府债券和货币性资产,目前正为 5 000 万元资金设计投资方案。 三个备选方案如下:
方案一:受让银行发行的大额存单 A,存单面值 4 000 万元,期限 10 年,年利率为 5%, 单利计息,到期一次还本付息。该存单尚有 3 年到期,受让价格为 5 000 万元。
方案二:以组合方式进行投资。其中,购入 3 万份政府债券 B,剩余额度投资于政府债券 C。 B 为 5 年期债券,尚有 1 年到期,票面价值 1 000 元,票面利率为 5%,每年付息一次, 到期还本,刚支付上期利息,当前市价为 980 元;该债券到期后,甲基金计划将到期还本付息金额全额购买 2 年期银行大额存单,预计有效年利率为 4.5%,复利计息,到期一次还本付息。C 为新发行的 4 年期国债,票面价值 1 000 元,票面利率为 5.5%,单利计息, 到期一次还本付息,发行价格为 1 030 元;计划持有三年后变现,预计三年后债券价格为 1 183.36 元。
方案三:平价购买新发行的政府债券 D,期限 3 年,票面价值 1 000 元,票面利率为 5%, 每半年付息一次,到期还本。 假设不考虑相关税费的影响。
要求:
设各方案的有效年利率为 r。
方案一:
4 000 + 4 000×5%×10 = 5 000×(1+r)3
解得:r = 6.27%
方案二:
购买债券 C 的金额= 5 000 - 3×980 = 2 060(万元)
购买债券 C 的数量= 2 060÷1 030 = 2(万份)
方案二的终值= 3×1 000×(1 + 5%)×(1 + 4.5%)2+ 2×1 183.36 = 5 806.60(万元)
5 806.60 = 5 000×(1+r)3
解得:r = 5.11%
方案三:
r =(1 + 5%÷2)2 - 1 = 5.06%
方案一的有效年利率最高,有效年利率即为投资收益率,所以选择方案一。

