设各方案的有效年利率为 r。
方案一:
4 000 + 4 000×5%×10 = 5 000×(1+r)3
解得:r = 6.27%
方案二:
购买债券 C 的金额= 5 000 - 3×980 = 2 060(万元)
购买债券 C 的数量= 2 060÷1 030 = 2(万份)
方案二的终值= 3×1 000×(1 + 5%)×(1 + 4.5%)2+ 2×1 183.36 = 5 806.60(万元)
5 806.60 = 5 000×(1+r)3
解得:r = 5.11%
方案三:
r =(1 + 5%÷2)2 - 1 = 5.06%
方案一的有效年利率最高,有效年利率即为投资收益率,所以选择方案一。



甲公司拟发行一批优先股,按季度永久支付优先股股利,每季度支付的每股优先股股利为 2 元,优先股投资的必要报酬率为 10%,则每股优先股的价值为( )元。
假设季度优先股折现率为 r,则(1 + r)4 - 1 = 10%,r = 2.41%,每股优先股 价值= 2÷2.41% = 82.99(元)。


假设甲、乙证券收益的相关系数接近于零,甲证券的期望报酬率为 6%(标准差为 10%), 乙证券的期望报酬率为 8%(标准差为 15%),则下列关于甲、乙证券构成的投资组合的说法中正确的有( )。
投资组合的期望报酬率等于单项资产期望报酬率的加权平均数,如果把资金 100% 投资于甲证券,组合报期望酬率最低(6%),选项 A 当选;如果把资金 100% 投资于乙证券,组合期望报酬率最高(8%),组合的风险也最大,组合标准差最高(15%),选项 B、 C 当选;相关系数小于 1,投资组合就会产生风险分散效应,且相关系数越小,风险分散效应越强,当相关系数足够小时,投资组合最低的标准差可能会低于单项资产的最低标准差, 选项 D 不当选。

预计通货膨胀提高时,无风险报酬率会随之提高,证券市场线的截距为无风险报酬率,所以证券市场线将向上平移,选项 B 当选;证券市场线的横轴表示系统风险,选项 D 当选。

