计算股票 A 和股票 B 的标准差。
若某投资者以 40% 股票 A 和 60% 股票 B 构建投资组合,计算该组合的期望报酬率、 标准差和变异系数。
根据以上计算结果,说明证券组合的期望报酬率和风险,与单项资产的期望报酬率和风险之间的关系。
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790
报价利率是指银行等金融机构提供的利率,该利率是包含了通货膨胀的利率,选项 A 不当选;有效年利率=(1 +计息期利率)复利次数- 1,计息期利率=报价利率 ÷ 年复利次数,报价利率不变时,有效年利率随着计息期利率的递减而增加(非线性关系),随着每年复利次数的增加而增加(非线性关系),选项 C、D 不当选。
甲公司以 951 元的价格购入面值为 1 000 元、票面利率为 10%、每半年支付一次利息、5 年 后到期的债券。甲公司持有该债券的年有效到期收益率为( )。
假设半年到期收益率为 rd,则:
951 = 1 000×10%÷2×(P/A,rd,10)+ 1 000×(P/F,rd,10)
当 rd = 5% 时:50×(P/A,5%,10)+ 1 000×(P/F,5%,10)= 999.99(元)
当 rd = 6% 时:50×(P/A,6%,10)+ 1 000×(P/F,6%,10)= 926.41(元)
根据插值法:,解得:rd = 5.67%
该债券的年有效到期收益率=(1 + 5.67%)2- 1 = 11.66%
(2016)小 W 因购买个人住房向甲银行借款 300 000 元,年利率 6%,每半年计息一次, 期限 5 年,自 2014 年 1 月 1 日起至 2019 年 1 月 1 日止,小 W 选择等额本息还款方式偿还 贷款本息,还款日在每年的 7 月 1 日和 1 月 1 日。2015 年 12 月末小 W 收到单位发放的一 次性年终奖 60 000 元,正在考虑这笔奖金的两种使用方案:
(1)2016 年 1 月 1 日提前偿还银行借款 60 000 元(当日仍需偿还原定的每期还款额)。
(2)购买乙国债并持有至到期,乙国债为 5 年期债券,每份债券面值 1 000 元,票面利率 4%,单利计息,到期一次还本付息,乙国债还有 3 年到期,当前价格 1 020 元。
要求:
设投资乙国债的到期收益率为 rd,则:
1020 = 1 000×(1 + 4%×5)×(P/F,rd,3)
(P/F,rd,3)= 0.85
当 rd = 5% 时,(P/F,5%,3)= 0.8638
当 rd = 6% 时,(P/F,6%,3)= 0.8396
用插值法解得:
rd = 5% +(0.85 - 0.8638)÷(0.8396 - 0.8638)×(6% - 5%)= 5.57%
银行借款的有效年利率=(1 + 6%÷2)2- 1 = 6.09%
乙国债的到期收益率 5.57% 小于借款的有效年利率 6.09%,小 W 应选择提前偿还银行借款。
针对问题(2):在已知利率和还款期限的情况下,如果能够计算出提前还款 后剩余期限的还款现值,就能根据年金现值方程式解出剩余期限的每期还款金额。
当前每期还款额= 300 000÷(P/A,3%,10)= 35 169.16(元)
解法一:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,4)+ 60 000×(P/F,3%,4)+ X×(P/A,3%,6)×(P/F, 3%,4)= 300 000(元)
解得:X = 24 092.73(元)
解法二:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,6)- 60 000 = X×(P/A,3%,6)
解得:X = 24 093.33(元)