计算股票 A 和股票 B 的标准差。
若某投资者以 40% 股票 A 和 60% 股票 B 构建投资组合,计算该组合的期望报酬率、 标准差和变异系数。
根据以上计算结果,说明证券组合的期望报酬率和风险,与单项资产的期望报酬率和风险之间的关系。
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790


某股票为股利固定增长的股票,最近一期支付的股利为 1.2 元 / 股,年股利增长率为 8%。 若无风险收益率为 4%,股票市场的平均收益率为 12%,该股票的贝塔系数为 1.5,则该股票的价值为( )元 / 股。

流动性溢价理论认为短期债券的流动性比长期债券高,因为债券到期期限越长, 利率变动的可能性越大,利率风险就越高,选项 C 不当选。

A 证券的期望报酬率为 12%,标准差为 15%;B 证券的期望报酬率为 18%,标准差为 20%。若投资于两种证券组合的机会集是一条曲线,有效边界与机会集重合,以下结论中 正确的有( )。
由于有效边界与机会集重合,则机会集曲线均为有效集,也就是说在机会集上没有向左凸出的部分,而证券 A 的标准差低于证券 B,所以最小方差组合是全部投资于 A 证券, 选项 A 当选;投资组合的报酬率是组合中各种资产预期报酬率的加权平均数,证券 B 的期 望报酬率高于证券 A,最高期望报酬率组合是全部投资于 B 证券,选项 B 当选;因为有效集为曲线,说明两证券的相关系数小于 1,能够分散风险,选项 C 当选;因为风险最小的投资组合为全部投资于 A 证券,期望报酬率最高的投资组合为全部投资于 B 证券,它们并非同一个组合,选项 D 不当选。

绝大多数资产的 β 系数是大于零的,它们收益率的变化方向与市场平均收益率的变化方向是一致的;极个别资产的 β 系数是负数,表明这类资产与市场平均收益的变化方向相反,当市场平均收益增加时,这类资产的收益却在减少。选项 A 当选。根据资本资产定价模型,必要收益率=Rf+β×(Rm-Rf),证券收益受到无风险报酬率Rf、风险价格(Rm- Rf)以及 β 系数的影响,选项 B 不当选。投资组合的 β 系数等于组合中各证券 β 值的加权平均数,一定会比组合某些证券的 β 系数低,比组合某些证券的 β 系数高,选项 C 不当选。 β 系数反映的是证券受系统风险影响的程度,选项 D 当选。

无论是折价、平价或是溢价发行的债券,提高等风险债券的市场利率,债券价值均下降,选项 A 当选,选项 B 不当选。随着到期时间的缩短,债券价值对市场利率的变化 变得越来越不敏感,选项 C 当选,选项 D 不当选。

