计算股票 A 和股票 B 的标准差。
若某投资者以 40% 股票 A 和 60% 股票 B 构建投资组合,计算该组合的期望报酬率、 标准差和变异系数。
根据以上计算结果,说明证券组合的期望报酬率和风险,与单项资产的期望报酬率和风险之间的关系。
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790



某投资者以 100 万元构建投资组合,该组合由 50 万元甲股票和 50 万元乙股票组成。长期政府债券的到期收益率为 2%,市场组合的必要报酬率为 10%,其他相关信息如表3-30 所示。
该投资组合的必要报酬率是( )。(2022)
投资组合的 β 系数= 0.6×50% + 1.2×50% = 0.9,投资组合的必要报酬率= 2% + 0.9×(10% - 2%)= 9.2%。


当满足未来经营效率、财务政策不变,且不增发新股或回购股票时,股利增长率可以用可持续增长率来确定:可持续增长率=股利增长率= 8%,股票价值= 1.2×(1 + 8%) ÷(10% - 8%)= 64.8(元)。

假设甲、乙证券收益的相关系数接近于零,甲证券的期望报酬率为 6%(标准差为 10%), 乙证券的期望报酬率为 8%(标准差为 15%),则下列关于甲、乙证券构成的投资组合的说法中正确的有( )。
投资组合的期望报酬率等于单项资产期望报酬率的加权平均数,如果把资金 100% 投资于甲证券,组合报期望酬率最低(6%),选项 A 当选;如果把资金 100% 投资于乙证券,组合期望报酬率最高(8%),组合的风险也最大,组合标准差最高(15%),选项 B、 C 当选;相关系数小于 1,投资组合就会产生风险分散效应,且相关系数越小,风险分散效应越强,当相关系数足够小时,投资组合最低的标准差可能会低于单项资产的最低标准差, 选项 D 不当选。

