根据股票价值的计算模型,Vs = D0×(1 + g)÷(rs- g),由公式看出,最近一期刚支付的股利 D0,股利增长率 g,与股票价值成同方向变化,选项 A、B 当选;投资要求的必要报酬率 rs 与股票价值成反向变化,选项 D 不当选;由资本资产定价模型可知, 无风险利率与投资要求的必要报酬率成同方向变化,因此无风险利率与股票价值成反方向变化,选项 C 不当选。
当两种证券的相关系数为“-1”时,投资组合的机会集是一条折线,投资组合的有效集是一条直线,选项 A 不当选。只要当两种证券间的相关系数小于 1,投资组合报酬率标准差就小于各证券投资报酬率标准差的加权平均数,选项 B 不当选。期望报酬率最高的组合是全部投资于收益率和风险最高的证券,此时无法分散风险,期望报酬率和风险最大, 选项 C 不当选。当证券的相关系数足够小时,会出现无效集,此时投资组合的有效集小于机会集,选项 D 当选。
投资者个人对风险的态度仅仅影响借入或贷出的资金量,而不影响最佳风险资产组合,选项 C 不当选。在 M 点左侧,投资者将同时拥有无风险资产和风险资产组合;在 M 点右侧,投资者将仅持有市场组合 M,并且会借入资金以进一步投资于组合 M,选项 D 当选。
期望报酬率= Q× 风险组合的期望报酬率+(1 - Q)× 无风险报酬率=(600 ÷500)×12% +(1 - 600÷500)×6% = 13.2%; 标 准 差 = Q×风险组合的标准差 = 600÷500×20% = 24%。
甲公司拟发行一批优先股,按季度永久支付优先股股利,每季度支付的每股优先股股利为 2 元,优先股投资的必要报酬率为 10%,则每股优先股的价值为( )元。
假设季度优先股折现率为 r,则(1 + r)4 - 1 = 10%,r = 2.41%,每股优先股 价值= 2÷2.41% = 82.99(元)。
流动性溢价理论认为短期债券的流动性比长期债券高,因为债券到期期限越长, 利率变动的可能性越大,利率风险就越高,选项 C 不当选。