对于一年内付息多次的债券来说,票面利率指的是报价利率,选项 A 当选,选项 D 不当选;计息期利率=报价利率 ÷ 一年内付息次数= 10%÷4 = 2.5%,选项 B 当选;有效年利率=(1 + 10%÷4)4- 1 = 10.38%,选项 C 当选。


甲公司在年初存入银行200 000元,期限5年,年利率6%,每年复利两次,到期一次还本付息。 则在第 5 年年末可收到的利息是( )元。
第五年年末的本利和 F = P×(F/P,3%,10)= 200 000×1.3439 = 268 780(元), 利息= 268 780 - 200 000 = 68 780(元)。

根据固定增长股利模型:股票期望报酬率=股利收益率+资本利得收益
率,股票价格上升会导致股票期望报酬率下降,选项 A 不当选;资本利得收益率(g)上升会导致股票期望报酬率上升,选项 B 当选;预期现金股利下降会导致股票期望报酬率下降,选项 C 不当选;预期持有该股票的时间对股票期望报酬率没有影响,选项 D 不当选。

由于每年分配股利 5 元并假设可以持续且保持不变,所以该股票是零增长股票, 其支付过程构成永续年金,股票的价值= 5÷10% = 50(元),选项 A、C、D 当选,选项 B 不当选。

表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790

