在市场经济条件下,利率=纯粹利率+通货膨胀溢价+违约风险溢价+流动性风 险溢价+期限风险溢价。


甲公司拟发行一批优先股,按季度永久支付优先股股利,每季度支付的每股优先股股利为 2 元,优先股投资的必要报酬率为 10%,则每股优先股的价值为( )元。
假设季度优先股折现率为 r,则(1 + r)4 - 1 = 10%,r = 2.41%,每股优先股 价值= 2÷2.41% = 82.99(元)。

对于一年内付息多次的债券来说,票面利率指的是报价利率,选项 A 当选,选项 D 不当选;计息期利率=报价利率 ÷ 一年内付息次数= 10%÷4 = 2.5%,选项 B 当选;有效年利率=(1 + 10%÷4)4- 1 = 10.38%,选项 C 当选。

假设甲、乙证券收益的相关系数接近于零,甲证券的期望报酬率为 6%(标准差为 10%), 乙证券的期望报酬率为 8%(标准差为 15%),则下列关于甲、乙证券构成的投资组合的说法中正确的有( )。
投资组合的期望报酬率等于单项资产期望报酬率的加权平均数,如果把资金 100% 投资于甲证券,组合报期望酬率最低(6%),选项 A 当选;如果把资金 100% 投资于乙证券,组合期望报酬率最高(8%),组合的风险也最大,组合标准差最高(15%),选项 B、 C 当选;相关系数小于 1,投资组合就会产生风险分散效应,且相关系数越小,风险分散效应越强,当相关系数足够小时,投资组合最低的标准差可能会低于单项资产的最低标准差, 选项 D 不当选。

A 证券的期望报酬率为 12%,标准差为 15%;B 证券的期望报酬率为 18%,标准差为 20%。若投资于两种证券组合的机会集是一条曲线,有效边界与机会集重合,以下结论中 正确的有( )。
由于有效边界与机会集重合,则机会集曲线均为有效集,也就是说在机会集上没有向左凸出的部分,而证券 A 的标准差低于证券 B,所以最小方差组合是全部投资于 A 证券, 选项 A 当选;投资组合的报酬率是组合中各种资产预期报酬率的加权平均数,证券 B 的期 望报酬率高于证券 A,最高期望报酬率组合是全部投资于 B 证券,选项 B 当选;因为有效集为曲线,说明两证券的相关系数小于 1,能够分散风险,选项 C 当选;因为风险最小的投资组合为全部投资于 A 证券,期望报酬率最高的投资组合为全部投资于 B 证券,它们并非同一个组合,选项 D 不当选。

根据股票价值的计算模型,Vs = D0×(1 + g)÷(rs- g),由公式看出,最近一期刚支付的股利 D0,股利增长率 g,与股票价值成同方向变化,选项 A、B 当选;投资要求的必要报酬率 rs 与股票价值成反向变化,选项 D 不当选;由资本资产定价模型可知, 无风险利率与投资要求的必要报酬率成同方向变化,因此无风险利率与股票价值成反方向变化,选项 C 不当选。

