

某人退休时有奖金 100 000 元,拟选择一项回报比较稳定的投资,希望每个季度能收到 2 000 元补贴生活。那么,该项投资的年收益率应不低于( )。
由于永续年金 P = A÷i,因此 i = A÷P,季度报酬率= 2 000÷100 000 = 2%, 即年有效报酬率=(1 + 2%)4- 1 = 8.24%,所以该项投资的年收益率应不低于 8.24%。

流动性溢价理论认为短期债券的流动性比长期债券高,因为债券到期期限越长, 利率变动的可能性越大,利率风险就越高,选项 C 不当选。


(2023)肖先生拟在 2023 年年末购置一套价格为 360 万元的精装修商品房,使用自有资金 140 万元,公积金贷款 60 万元,余款通过商业贷款获得。公积金贷款和商业贷款期限均为 10 年,均为浮动利率。2023 年年末公积金贷款利率为 4%,商业贷款利率为 6%,均采用等额本息方式在每年年末还款。
该商品房两年后交付,且直接拎包入住。肖先生计划收房后即搬入,居住满 8 年后(2033 年年末)退休返乡并将该商品房出售,预计扣除各项税费后变现净收入 450 万元。若该商品房用于出租,每年年末可获得税后租金 6 万元。
肖先生拟在第 5 年年末(2028 年年末)提前偿还 10 万元商业贷款本金,预计第 5 年年末公积金贷款利率下降至 3%,商业贷款利率下降至 5%。
整个购房方案的等风险投资必要报酬率为 9%。
要求:
公积金年还款金额= 60÷(P/A,4%,10)= 60÷8.1109 = 7.40(万元)
商业贷款年还款金额=(360 - 140 - 60)÷(P/A,6%,10)= 160÷7.3601 = 21.74(万元)
公积金贷款余额= 7.40×(P/A,4%,5)= 7.40×4.4518 = 32.94(万元)
商业贷款余额= 21.74×(P/A,6%,5)- 10 = 21.74×4.2124 - 10 = 81.58(万元)
公积金等额年金= 32.94÷(P/A,3%,5)= 32.94÷4.5797 = 7.19(万元)
商业贷款等额年金= 81.58÷(P/A,5%,5)= 81.58÷4.3295 = 18.84(万元)
公积金还款的净现值= 7.40×(P/A,9%,5)+ 7.19×(P/A,9%,5)×(P/F,9%,5)
= 7.40×3.8897 + 7.19×3.8897×0.6499 = 46.96(万元)
商业贷款还款的净现值= 21.74×(P/A,9%,5)+ [18.84×(P/A,9%,5)+ 10]×(P/F, 9%,5)
= 21.74×3.8897 +(18.84×3.8897 + 10)×0.6499 = 138.69(万元)
每年租金的净现值= 6×(P/A,9%,8)×(P/F,9%,2)
= 6×5.5348×0.8417 = 27.95(万元)
购房方案的净现值= 450×(P/F,9%,10)- 140 - 46.96 - 138.69 + 27.95
= 450×0.4224 - 297.70 = -107.62(万元)
由于该购房方案的净现值小于零,因此购房方案在经济价值上不可行。

甲公司欲投资购买债券,目前是 2022 年 7 月 1 日,市面上有 4 家公司债券可供投资,其基本信息如表 3-32 所示。
其中:A 公司发行的债券每年 6 月 30 日付息一次,到期还本;B 公司发行的债券单利计息,到期一次还本付息;C 公司发行的债券为纯贴现债券,期内不付息,到期还本;D 公司发行的债券每年 12 月 31 日付息一次,到期还本。
要求:
A 债券的价值= 1 000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
A 债券价值 1 084.29 元小于债券价格 1 105 元,所以不应购买。
B 债券的价值= 1 000×(1 + 7×8%)×(P/F,6%,5)= 1 560×0.7473 = 1 165.79(元)
B 债券的价值 1 165.79 元小于债券价格 1 231.3 元,所以不应购买。
C 债券的价值= 1 000×(P/F,6%,5)= 1 000×0.7473 = 747.3(元)
C 债券的价值 747.3 元大于债券价格 600 元,应购买。
D 债券的价值= [80 + 80×(P/A,6%,2)+ 1 000×(P/F,6%,2)]÷(1 + 6%)0.5
= [80 + 80×1.8334 + 1 000×0.8900]÷(1 + 6%)0.5= 1 084.61(元)
D 债券的价值 1 084.61 元等于债券价格,可以购买。
A 债券:
1105 = 1 000×8%×(P/A,i,5)+ 1 000×(P/F,i,5)
当 i = 5% 时:1000×8%×(P/A,5%,5)+ 1 000×(P/F,5%,5)= 80×4.3295 + 1 000×0.7835 = 1 129.86(元)
当 i = 6% 时:1000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
用插值法:
(i - 5%)÷(6% - 5%)=(1 105 - 1 129.86)÷(1 084.29 - 1 129.86)
解得:债券到期收益率= 5.55%
B 债券:
1231.3 = 1 000×(1 + 7×8%)×(P/F,i,5) (P/F,i,5)= 1 231.3÷1 560 = 0.7893
当 i = 5% 时:(P/F,5%,5)= 0.7835
当 i = 4% 时:(P/F,4%,5)= 0.8219
用插值法解得:
债券到期收益率= 4% +(5% - 4%)×(0.7893 - 0.8219)÷(0.7835 - 0.8219)= 4.85%
C 债券:
600 = 1 000×(P/F,i,5) (P/F,i,5)= 0.6
当 i = 10% 时:(P/F,10%,5)= 0.6209
当 i = 12% 时:(P/F,12%,5)= 0.5674
用插值法解得:
债券到期收益率= 10% +(0.6 - 0.6209)÷(0.5674 - 0.6209)×(12% - 10%)= 10.78%
D 债券:
由于价值等于发行价格,所以到期收益率等于必要报酬率 6%。

