当两种证券的相关系数为“-1”时,投资组合的机会集是一条折线,投资组合的有效集是一条直线,选项 A 不当选。只要当两种证券间的相关系数小于 1,投资组合报酬率标准差就小于各证券投资报酬率标准差的加权平均数,选项 B 不当选。期望报酬率最高的组合是全部投资于收益率和风险最高的证券,此时无法分散风险,期望报酬率和风险最大, 选项 C 不当选。当证券的相关系数足够小时,会出现无效集,此时投资组合的有效集小于机会集,选项 D 当选。



,甲公司股票的必要报酬率= Rf + β×(Rm- Rf)= 6% + 1.25×(20% - 6%)= 23.5%。

表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790

甲公司欲投资购买债券,目前是 2022 年 7 月 1 日,市面上有 4 家公司债券可供投资,其基本信息如表 3-32 所示。
其中:A 公司发行的债券每年 6 月 30 日付息一次,到期还本;B 公司发行的债券单利计息,到期一次还本付息;C 公司发行的债券为纯贴现债券,期内不付息,到期还本;D 公司发行的债券每年 12 月 31 日付息一次,到期还本。
要求:
A 债券的价值= 1 000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
A 债券价值 1 084.29 元小于债券价格 1 105 元,所以不应购买。
B 债券的价值= 1 000×(1 + 7×8%)×(P/F,6%,5)= 1 560×0.7473 = 1 165.79(元)
B 债券的价值 1 165.79 元小于债券价格 1 231.3 元,所以不应购买。
C 债券的价值= 1 000×(P/F,6%,5)= 1 000×0.7473 = 747.3(元)
C 债券的价值 747.3 元大于债券价格 600 元,应购买。
D 债券的价值= [80 + 80×(P/A,6%,2)+ 1 000×(P/F,6%,2)]÷(1 + 6%)0.5
= [80 + 80×1.8334 + 1 000×0.8900]÷(1 + 6%)0.5= 1 084.61(元)
D 债券的价值 1 084.61 元等于债券价格,可以购买。
A 债券:
1105 = 1 000×8%×(P/A,i,5)+ 1 000×(P/F,i,5)
当 i = 5% 时:1000×8%×(P/A,5%,5)+ 1 000×(P/F,5%,5)= 80×4.3295 + 1 000×0.7835 = 1 129.86(元)
当 i = 6% 时:1000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
用插值法:
(i - 5%)÷(6% - 5%)=(1 105 - 1 129.86)÷(1 084.29 - 1 129.86)
解得:债券到期收益率= 5.55%
B 债券:
1231.3 = 1 000×(1 + 7×8%)×(P/F,i,5) (P/F,i,5)= 1 231.3÷1 560 = 0.7893
当 i = 5% 时:(P/F,5%,5)= 0.7835
当 i = 4% 时:(P/F,4%,5)= 0.8219
用插值法解得:
债券到期收益率= 4% +(5% - 4%)×(0.7893 - 0.8219)÷(0.7835 - 0.8219)= 4.85%
C 债券:
600 = 1 000×(P/F,i,5) (P/F,i,5)= 0.6
当 i = 10% 时:(P/F,10%,5)= 0.6209
当 i = 12% 时:(P/F,12%,5)= 0.5674
用插值法解得:
债券到期收益率= 10% +(0.6 - 0.6209)÷(0.5674 - 0.6209)×(12% - 10%)= 10.78%
D 债券:
由于价值等于发行价格,所以到期收益率等于必要报酬率 6%。

(2022)甲基金主要投资政府债券和货币性资产,目前正为 5 000 万元资金设计投资方案。 三个备选方案如下:
方案一:受让银行发行的大额存单 A,存单面值 4 000 万元,期限 10 年,年利率为 5%, 单利计息,到期一次还本付息。该存单尚有 3 年到期,受让价格为 5 000 万元。
方案二:以组合方式进行投资。其中,购入 3 万份政府债券 B,剩余额度投资于政府债券 C。 B 为 5 年期债券,尚有 1 年到期,票面价值 1 000 元,票面利率为 5%,每年付息一次, 到期还本,刚支付上期利息,当前市价为 980 元;该债券到期后,甲基金计划将到期还本付息金额全额购买 2 年期银行大额存单,预计有效年利率为 4.5%,复利计息,到期一次还本付息。C 为新发行的 4 年期国债,票面价值 1 000 元,票面利率为 5.5%,单利计息, 到期一次还本付息,发行价格为 1 030 元;计划持有三年后变现,预计三年后债券价格为 1 183.36 元。
方案三:平价购买新发行的政府债券 D,期限 3 年,票面价值 1 000 元,票面利率为 5%, 每半年付息一次,到期还本。 假设不考虑相关税费的影响。
要求:
设各方案的有效年利率为 r。
方案一:
4 000 + 4 000×5%×10 = 5 000×(1+r)3
解得:r = 6.27%
方案二:
购买债券 C 的金额= 5 000 - 3×980 = 2 060(万元)
购买债券 C 的数量= 2 060÷1 030 = 2(万份)
方案二的终值= 3×1 000×(1 + 5%)×(1 + 4.5%)2+ 2×1 183.36 = 5 806.60(万元)
5 806.60 = 5 000×(1+r)3
解得:r = 5.11%
方案三:
r =(1 + 5%÷2)2 - 1 = 5.06%
方案一的有效年利率最高,有效年利率即为投资收益率,所以选择方案一。

