某股票为股利固定增长的股票,最近一期支付的股利为 1.2 元 / 股,年股利增长率为 8%。 若无风险收益率为 4%,股票市场的平均收益率为 12%,该股票的贝塔系数为 1.5,则该股票的价值为( )元 / 股。
此题考查递延年金现值的计算,选项 A、C 属于递延年金的常规解法,选项 B、 D 属于递延年金的扩展解法。对于选项 B,先计算未来现金流量在第 2 年年末的现值:① =1 000×(P/A,10%,10);再计算未来现金流量在第“-1”年年初的现值:②=1 000×(P/A, 10%,10)×(P/F,10%,3);最后计算未来现金流量在 0 时点的现值:③= 1 000×(P/A, 10%,10)×(P/F,10%,3)×(1 + 10%),如图 3-10 所示。对于选项 D,先计算未来现金流量在第“-1”年年初的现值:①-②= 1 000×(P/A,10%,13)- 1 000×(P/A, 10%,3),再计算未来现金流量在0时点的现值:③=(①-②)×(1+10%)= [1 000×(P/A, 10%,13)- 1 000×(P/A,10%,3)]×(1 + 10%),如图 3-11 所示。
甲公司长期持有 B 股票,目前每股现金股利 2 元,每股市价 20 元,在保持目前的经营效率和财务政策不变且不从外部进行股权融资和回购股票的情况下,其预计收入增长率为 10%,则下列说法中正确的有( )。
在保持经营效率和财务政策不变,且不从外部进行股权融资和回购股票的情况下, 股利增长率=可持续增长率= 10%,股利收益率= 2×(1 + 10%)÷20 = 11%,股票期望报酬率= 11% + 10% = 21%。
表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790