第五年年末的本利和 F = P×(F/P,3%,10)= 200 000×1.3439 = 268 780(元), 利息= 268 780 - 200 000 = 68 780(元)。


当满足未来经营效率、财务政策不变,且不增发新股或回购股票时,股利增长率可以用可持续增长率来确定:可持续增长率=股利增长率= 8%,股票价值= 1.2×(1 + 8%) ÷(10% - 8%)= 64.8(元)。

甲公司以 951 元的价格购入面值为 1 000 元、票面利率为 10%、每半年支付一次利息、5 年 后到期的债券。甲公司持有该债券的年有效到期收益率为( )。
假设半年到期收益率为 rd,则:
951 = 1 000×10%÷2×(P/A,rd,10)+ 1 000×(P/F,rd,10)
当 rd = 5% 时:50×(P/A,5%,10)+ 1 000×(P/F,5%,10)= 999.99(元)
当 rd = 6% 时:50×(P/A,6%,10)+ 1 000×(P/F,6%,10)= 926.41(元)
根据插值法:,解得:rd = 5.67%
该债券的年有效到期收益率=(1 + 5.67%)2- 1 = 11.66%

假设甲、乙证券收益的相关系数接近于零,甲证券的期望报酬率为 6%(标准差为 10%), 乙证券的期望报酬率为 8%(标准差为 15%),则下列关于甲、乙证券构成的投资组合的说法中正确的有( )。
投资组合的期望报酬率等于单项资产期望报酬率的加权平均数,如果把资金 100% 投资于甲证券,组合报期望酬率最低(6%),选项 A 当选;如果把资金 100% 投资于乙证券,组合期望报酬率最高(8%),组合的风险也最大,组合标准差最高(15%),选项 B、 C 当选;相关系数小于 1,投资组合就会产生风险分散效应,且相关系数越小,风险分散效应越强,当相关系数足够小时,投资组合最低的标准差可能会低于单项资产的最低标准差, 选项 D 不当选。

甲投资组合由证券 A 和证券 B 各占 50% 构成,证券 A 的期望收益率为 10%,标准差为 12%,β 系数为 1.3;证券 B 的期望收益率为 14%,标准差为 16%,β 系数为 1.1。证券 A 和 证券 B 的相关系数为 0,则下列说法中,正确的有( )。(2022)
投资组合的期望报酬率= 10%×50% + 14%×50% = 12%,选项 A 当选;投资组合的 β 系数= 50%×1.3 + 50%×1.1 = 1.2,选项 B 当选;投资组合的标准差== 10%,选项 C 不当选;投资组合变异系数=投资组合的标准差 ÷ 投资组合的期望报酬率= 10%÷12% = 0.83,
选项 D 不当选。

(2023)肖先生拟在 2023 年年末购置一套价格为 360 万元的精装修商品房,使用自有资金 140 万元,公积金贷款 60 万元,余款通过商业贷款获得。公积金贷款和商业贷款期限均为 10 年,均为浮动利率。2023 年年末公积金贷款利率为 4%,商业贷款利率为 6%,均采用等额本息方式在每年年末还款。
该商品房两年后交付,且直接拎包入住。肖先生计划收房后即搬入,居住满 8 年后(2033 年年末)退休返乡并将该商品房出售,预计扣除各项税费后变现净收入 450 万元。若该商品房用于出租,每年年末可获得税后租金 6 万元。
肖先生拟在第 5 年年末(2028 年年末)提前偿还 10 万元商业贷款本金,预计第 5 年年末公积金贷款利率下降至 3%,商业贷款利率下降至 5%。
整个购房方案的等风险投资必要报酬率为 9%。
要求:
公积金年还款金额= 60÷(P/A,4%,10)= 60÷8.1109 = 7.40(万元)
商业贷款年还款金额=(360 - 140 - 60)÷(P/A,6%,10)= 160÷7.3601 = 21.74(万元)
公积金贷款余额= 7.40×(P/A,4%,5)= 7.40×4.4518 = 32.94(万元)
商业贷款余额= 21.74×(P/A,6%,5)- 10 = 21.74×4.2124 - 10 = 81.58(万元)
公积金等额年金= 32.94÷(P/A,3%,5)= 32.94÷4.5797 = 7.19(万元)
商业贷款等额年金= 81.58÷(P/A,5%,5)= 81.58÷4.3295 = 18.84(万元)
公积金还款的净现值= 7.40×(P/A,9%,5)+ 7.19×(P/A,9%,5)×(P/F,9%,5)
= 7.40×3.8897 + 7.19×3.8897×0.6499 = 46.96(万元)
商业贷款还款的净现值= 21.74×(P/A,9%,5)+ [18.84×(P/A,9%,5)+ 10]×(P/F, 9%,5)
= 21.74×3.8897 +(18.84×3.8897 + 10)×0.6499 = 138.69(万元)
每年租金的净现值= 6×(P/A,9%,8)×(P/F,9%,2)
= 6×5.5348×0.8417 = 27.95(万元)
购房方案的净现值= 450×(P/F,9%,10)- 140 - 46.96 - 138.69 + 27.95
= 450×0.4224 - 297.70 = -107.62(万元)
由于该购房方案的净现值小于零,因此购房方案在经济价值上不可行。

