期望报酬率= Q× 风险组合的期望报酬率+(1 - Q)× 无风险报酬率=(600 ÷500)×12% +(1 - 600÷500)×6% = 13.2%; 标 准 差 = Q×风险组合的标准差 = 600÷500×20% = 24%。
某股票为股利固定增长的股票,最近一期支付的股利为 1.2 元 / 股,年股利增长率为 8%。 若无风险收益率为 4%,股票市场的平均收益率为 12%,该股票的贝塔系数为 1.5,则该股票的价值为( )元 / 股。
甲公司拟发行一批优先股,按季度永久支付优先股股利,每季度支付的每股优先股股利为 2 元,优先股投资的必要报酬率为 10%,则每股优先股的价值为( )元。
假设季度优先股折现率为 r,则(1 + r)4 - 1 = 10%,r = 2.41%,每股优先股 价值= 2÷2.41% = 82.99(元)。
表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790