本题考查一元线性回归模型。
描述因变量如何依赖自变量和误差项的方程称为回归模型,回归模型的类别如下:
(1)根据自变量的多少,回归模型可以分为一元回归模型和多元回归模型。
(2)根据回归模型是否线性,回归模型分为线性回归模型和非线性回归模型。【BC选项错误】。
因此,本题正确答案为选项AD。
本题考查一元线性回归模型。
题目中β=-0.8,r<0,说明x与y是负相关,x每增加1个单位,y平均减少0.8个单位。
因此,本题正确答案为选项D。
本题考查一元线性回归模型。
只涉及一个自变量的一元线性回归模型表示为Y=β0+β1X+ε,因变量Y是自变量X的线性函数(β0+β1X)加上误差项ε;β0+β1X反映了由于自变量X的变化而引起的因变量Y的线性变化。误差项ε是个随机变量,表示除线性关系之外的随机因素对Y的影响,它是不能由X和Y的线性关系所解释的Y的变异性【D选项错误】。
因此,本题正确答案为选项D。
本题考查回归分析的概念。
【B选项正确】回归分析就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的依赖关系。
【A选项错误】相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的—种统计方法。
【C选项错误】定量分析是对社会现象的数量特征、数量关系与数量变化的分析。
【D选项错误】定性分析就是对研究对象进行"质"的方面的分析。
因此,本题正确答案为选项B。
本题考查一元线性回归模型。
一元线性回归模型中,Y=β0+β1X+ε中,误差项ε是个随机变量,表示除线性关系之外的随机因素对Y的影响,它是不能由X和Y的线性关系所解释的Y的变异性。
因此,本题正确答案为选项A。
本题考查一元线性回归模型。
Y=1000+0.7X,X为人均收入、Y为人均消费。
当人均可支配收入为20000元时,人均消费=1000+0.7×20000=15000元。【B选项正确】
当人均可支配收入增加1元时,
Y增加额=(1000+0.7×2)-(1000+0.7×1)=0.7,即当人均可支配收入增加1元,人均消费将平均增加0.7元。【D选项正确】
因此,本题正确答案为选项BD。