分别计算甲、乙两个投资项目期望报酬率的标准差;
分别计算甲、乙两个投资项目期望报酬率的变异系数;
假设股票市场期望报酬率的标准差为8%,分别计算甲、乙两个投资项目期望报酬率与市场组合期望报酬率的相关系数;
假设分别按照80%和20%的比例投资购买甲、乙两个投资项目构成的投资组合,计算该组合的β值和组合的期望报酬率。
甲项目的期望报酬率=0.2×25%+0.5×12%+0.3×(-5%)=9.5%
乙项目的期望报酬率=0.2×20%+0.5×9%+0.3×2%=9.1%
甲项目期望报酬率的标准差
= =10.69%
乙项目期望报酬率的标准差
==6.24%
甲项目期望报酬率的变异系数=10.69%/9.5%=1.13
乙项目期望报酬率的变异系数=6.24%/9.1%=0.69
根据资本资产定价模型:
5%+β甲×(12%-5%)=9.5%,则β甲=0.64
5%+β乙×(12%-5%)=9.1%,则β乙=0.59
甲项目期望报酬率与市场组合期望报酬率的相关系数=0.64×8%/10.69%=0.48
乙项目期望报酬率与市场组合期望报酬率的相关系数=0.59×8%/6.24%=0.76
组合的β值=80%×0.64+20%×0.59=0.63
组合的期望报酬率=80%×9.5%+20%×9.1%=9.42%
投资组合的期望报酬率等于各项资产期望报酬率的加权平均数,所以投资组合的期望报酬率的影响因素只受投资比重和个别报酬率影响,当把资金100%投资于A证券时,组合期望报酬率最低为10%,当把资金100%投资于B证券时,组合期望报酬率最高为12%,选项A、B正确;题干指出有效边界与机会集重合,即机会集曲线上不存在无效投资组合,整个机会集曲线就是从最小方差组合点到最高报酬率点的有效集,也就是说在机会集上没有向左凸出的部分,所以当100%投资于B证券时,组合风险最大,组合标准差为18%,选项C正确;当100%投资于A证券时,组合风险最小,组合标准差为14%,选项D正确。
影响证券组合的标准差不仅取决于单个证券的标准差,而且也取决于证券之间的协方差,选项A正确;相关系数为1时,证券组合的风险等于各证券风险的加权平均数,-1≤相关系数<1时,证券组合的风险小于各证券风险的加权平均数,因此持有多种彼此不完全正相关的证券可以降低风险,选项B正确;资本市场线揭示出持有不同比例无风险资产与市场组合情况下风险和报酬的权衡关系,选项C正确;机会集曲线的横坐标是标准差,纵坐标是期望报酬率,反映不同投资比例组合的风险和报酬之间的权衡关系,选项D正确。
A证券期望报酬率的标准差=1.44%1/2=12%,B证券期望报酬率的标准差=0.36%1/2=6%,协方差=相关系数×12%×6%=0.005,则相关系数=0.005/(12%×6%)=0.69,选项D正确。