在投资比例相等的情况下,当相关系数r12=1(完全正相关)时,投资组合不能分散任何风险:投资组合的标准差=A证券的标准差×A证券的投资比例+B证券的标准差×B证券的投资比例=18%×50%+30%×50%=24%。
β系数=该股票报酬率与整个股票市场报酬率的相关系数×该股票报酬率的标准差/整个股票市场报酬率的标准差,由于相关系数可以为负数,所以β系数也可以为负数,选项A正确;β系数反映的是证券的系统风险,选项B正确;根据资本资产定价模型:Ri=Rf+β×(Rm-Rf)可知,β系数不是影响证券报酬的唯一因素,选项C错误;投资组合的β系数等于被组合各证券β系数的加权平均数,选项D错误。
A公司有甲、乙两个投资项目,假设未来的市场销售情况有三种:很好、一般、很差,有关的概率分布和期望报酬率如下表所示:
市场销售情况 | 概率 | 甲项目的期望报酬率 | 乙项目的期望报酬率 |
很好 | 0.2 | 25% | 20% |
一般 | 0.5 | 12% | 9% |
很差 | 0.3 | -5% | 2% |
要求:
甲项目的期望报酬率=0.2×25%+0.5×12%+0.3×(-5%)=9.5%
乙项目的期望报酬率=0.2×20%+0.5×9%+0.3×2%=9.1%
甲项目期望报酬率的标准差
= =10.69%
乙项目期望报酬率的标准差
==6.24%
甲项目期望报酬率的变异系数=10.69%/9.5%=1.13
乙项目期望报酬率的变异系数=6.24%/9.1%=0.69
根据资本资产定价模型:
5%+β甲×(12%-5%)=9.5%,则β甲=0.64
5%+β乙×(12%-5%)=9.1%,则β乙=0.59
甲项目期望报酬率与市场组合期望报酬率的相关系数=0.64×8%/10.69%=0.48
乙项目期望报酬率与市场组合期望报酬率的相关系数=0.59×8%/6.24%=0.76
组合的β值=80%×0.64+20%×0.59=0.63
组合的期望报酬率=80%×9.5%+20%×9.1%=9.42%