题目
本题来源:第三节 风险与报酬
点击去做题


答案解析
答案:
A,D
答案解析:
相关系数为+1时,不能分散任何风险;相关系数为0时,可以分散部分非系统风险;相关系数为-1时,能够抵消全部非系统风险;相关系数在0~1之间,随着正相关程度的提高,分散风险的程度逐渐减小;相关系数在0~-1之间,相关程度越低,分散风险的程度逐渐增大。
立即查看答案


拓展练习
第1题
答案解析
答案:
B
答案解析:影响投资组合期望报酬率的因素有单项证券的期望报酬率和单项证券在全部投资中的比重,选项B正确。
点此查看答案


第2题
答案解析
答案:
D
答案解析:
只要-1≤相关系数<1,就可分散风险,选项A错误;相关系数越趋近于1,风险分散效应越弱,选项B错误;相关系数越趋近于-1,风险分散效应越强,选项C错误。
点此查看答案


第3题
答案解析
答案:
B
答案解析:投资组合理论认为不同股票的投资组合可以分散公司的特有风险,股票的种类越多,承担公司的特有风险就越小,但投资组合不能分散市场风险。因此,不管投资多样化有多充分,也不可能消除全部风险,即使购买的是全部股票的市场组合。选项B当选。
点此查看答案


第4题
答案解析
答案:
A,B,C,D
答案解析:
对于两种证券组成的投资组合,投资组合的标准差=(A12σ12+A22σ22+2A1A2r12σ1σ2)1/2,等比例投资时,A1和A2均等于0.5。如果相关系数为-1,则σp=|A1σ1-A2σ2|=1%;如果相关系数为1,则σp=A1σ1+A2σ2=11%;如果相关系数为0,则σp=(A12σ12+A22σ22)1/2=7.81%。相关系数为1时,不能分散风险,此时组合标准差最大,σp为11%;相关系数为-1时,风险分散效果最好,此时组合标准差最小,σp为1%。
点此查看答案


第5题
答案解析
答案:
D
答案解析:
A证券期望报酬率的标准差=1.44%1/2=12%,B证券期望报酬率的标准差=0.36%1/2=6%,协方差=相关系数×12%×6%=0.005,则相关系数=0.005/(12%×6%)=0.69,选项D正确。
点此查看答案










或Ctrl+D收藏本页